Review

ISO 11843 Part 7: ビジネス戦略としての検出限界推定法

小谷 明*1、楠 文代*1、林 譲*2

ISO 11843 Part 7: Method for Estimating Detection Limit as Business Strategy

Akira Kotani¹, Fumiyo Kusu¹, Yuzuru Hayashi²

¹Tokyo University of Pharmacy and Life Sciences, 1432–1 Horinouchi, Hachioji, Tokyo 192–0392

²Teikyo Heisei University, 4–1 Uruidominami, Ichihara, Chiba 290–0193

Abstract

ISO International Standards are strategic tools for business that reduce costs by minimizing waste and errors and increasing productivity. This paper takes ISO 11843 Part 7: Methodology based on stochastic properties of instrumental noise. This standard provides a method to estimate the detection limit from the noise and signal data involved in a chromatogram with no recourse to repeated measurements of real samples. Determination of epichatechin in HPLC with electrochemical detection is taken as an example. ISO 11843 Part 7 will help to improve global environments by saving time, energy, material and human efforts that would be required by repetition.

Keywords: Detection limit, FUMI theory, ISO11843-7, Precision

1. 緒言

分析法の信頼性を保証する方法論である分析法バリデー ションの分析能パラメータは検出限界を含んでいる。定義に より[1,2]、検出限界は測定値の標準偏差(SD)から算出さ れる。しかし、SDを求めるためにくり返し測定を採用すれ ば、その作業は煩わしいものとなる。一定な測定環境の維 持、物質、エネルギー、時間、労力などが要求されるからで ある。幸いなことに、2012年6月に発行された国際標準化機 構(ISO)の国際規格 ISO 11843 Part 7 には、くり返し測定 なしに検出限界を求める方法が採用されている[1]。対象は クロマトグラフィーなどの機器分析に限定されるが、この規 格を用いれば、物質、エネルギーなどが節約できるため、地 球環境の保全にも貢献できると考えられる。

ISO の英語表記は International Organization for Standardization であり、この頭字語は IOS であり、ISO ではない。ISO は isotope、isocratic などの接頭辞であるギリシャ語の isos (均等)に由来する表記である。ISOは異なった言語に翻訳 されると、異なった記述、略号となる。しかし、ISOはどの ような言語、地域においても、常に ISO と表記される。

ISOから出版される国際規格は、物質、製品、工程、サー ビスが目的に適うように、必要事項、ガイドライン、仕様、 特徴などを提供する文書であり、製品およびサービスの安全 性、信頼性、品質を保証する[3]。ビジネスにおいては、ISO の国際規格は無駄と間違いを最小にし、生産力を向上させる ことにより、コストを削減する戦略となりえる[3]。

ISO 11843は検出限界を求めるための理論、方法論を収載 したシリーズであり、7つのパートから成る(2012年8月現 在)。Part7には、分析機器のベースラインノイズの確率論 的性質から検出限界(測定値のSD)を求める方法論として FUMI理論(Function of Mutual Information)が採用されてい る。検出限界に近い低濃度サンプルの測定値の誤差の主要な 要因がベースランノイズである分析機器には、FUMI 理論が

^{*&}lt;sup>1</sup>東京薬科大学 〒192-0392 東京都八王子市堀之内1432-1 *²帝京平成大学 〒290-0193 千葉県市原市うるいど南4-1

適用できる。このような機器には、液体クロマトグラフィー、ガスクロマトグラフィー、原子吸光分析法などがある。

ISOの規格である限り、科学技術的、経済的、社会的な利益をもたらすことが必要条件である。たとえば、FUMI 理論の最も重要な利点は、1回の測定データ(クロマトグラムなど)に含まれるノイズとシグナルに関する情報から測定値のSDを推定できることにある。貴重なまたは高価なサンプルにおいてはくり返し測定は現実的ではないし、短寿命のラジオアイソトープでは、原理的に不可能である。FUMI 理論はくり返し測定を回避することにより、エネルギーなどの節約、最終的には地球環境の保全に資することが期待できる。

本稿は、FUMI 理論の原理と応用例を記述する。原理は、 ホワイトノイズ、マルコフ過程などを含む確率過程論とフー リエ変換であり、応用例は、電気化学検出 HPLC によるカ テキン類の分析である。

2. ISO 11843シリーズ

ISO 11843は検出限界の理論と実践に関するシリーズ規格 であり、日本語翻訳規格もあるので合わせて紹介する。ISO 11843シリーズは7つのパートから成っている(2012年8月 現在):

Part 1: Terms and definitions

Part 2: Methodology in the linear calibration case

Part 3: Methodology for determination of the critical value for the response variable when no calibration data are used

Part 4: Methodology for comparing the minimum detectable value with a given value

Part 5: Methodology in the linear and non–linear calibration cases Part 6: Methodology for the determination of the critical value and the minimum detectable value in Poisson distributed measurements by normal approximations

Part 7: Methodology based on stochastic properties of instrumental noise

2012年8月現在、Part6はISOで検討中であるが、他の

パートは全て出版されている。Part1は、検出限界に係る用 語の定義が記載されている。Part5は、検量線が非線形の場 合(競合法 ELISA など)の検出限界の定義と算出法を収載 している。これは、検量線が線形の場合(Part2)の概念を 含むより一般的な方法論を記述している。Part7(下線)は、 本稿で取り上げる国際規格である。

ISO 11843の日本語翻訳規格は日本規格協会から発行され ている日本工業規格 JIS Z 8462(測定方法の検出能力)で あり、次の5部から成る(2012年8月現在):

第1部:用語及び定義

第2部:検量線が直線である場合の方法

第3部:検量線がない場合に応答変数の限界値を求める方法 第4部:与えられた値が検出可能か否かの判定方法

第5部:検量線が線形及び非線形である場合の方法

JIS 規格の部は ISO 規格の Part に対応している。第7部の 翻訳作業は現在進行中である(2012年8月現在)。

ISOの用語(英語)とそのJIS 翻訳規格の用語(日本語) は、分析化学で通常使われる用語と大きな違いがある。表1 は、分析化学、ISO、JIS の対応する用語を示している。ISO が科学、技術、経済など広い分野における普遍性を重視し、 化学だけに限定した用語を使わないことが相違の理由であ る。

分析化学で使われる「検出限界」は、JIS では「検出可能 な最小正味状態変数値」であり、正味状態変数とは検量線の X-軸(たとえば、濃度、重さ)に対応する。検量線の Y-軸 は測定値であるが、ISO の用語は応答変数またはレスポンス 変数である。分析機器の出力をレスポンスということがある が、応答変数はクロマトグラムまたはチャートの信号強度で はない。事実、JIS Z 8462第1部の記述は、「検出に分光光 度法を用いるクロマトグラフィが適用されるときには、応答 変数はピーク高さ、又はピーク面積となる」である。「クロ マトグラフィ」は原文のまま記載しているが、本稿では、「ク ロマトグラフィー」を用いている。

次の項で紹介する検出限界の定義は、ISO 11843シリーズ 「測定方法の検出能力」の Part 5 と Part 7 に記載されてい

分析化学用語	ISO 用語(日本語は JIS 用語)
検出限界	検出可能な最小正味状態変数値
Limit of detection	Minimum detectable value of the net state variable
判定限界	正味状態変数の限界値
Limit of decision	Critical value of the net state variable
測定値—検量線の Y-軸	応答変数、レスポンス変数
Measurement	Response variable
濃度、重さ─検量線の X−軸	正味状態変数
Concentration, Weight	Net state variable

表1.分析化学と ISO における検出限界に係る用語の定義

JIS Z 8462-1 と文献[2]により作成。

る。この規格を作成した ISO の組織は Technical Committee TC 69(統計的方法の適用)のサブグループ Subcommittee SC 6(測定方法と測定結果)であり、統計学と分析化学の専門 家集団である。本稿の検出限界の定義は日本薬局方の分析法 バリデーション、分析化学の専門書[2]の定義と同等である。

本稿では、化学の用語を主に使う。「濃度」と書かれてい ても、厳密には、「正味状態変数」を表す。つまり、濃度は 検量線の X-軸であり、重さの場合もある。このような場合、 一般的な量を表す ISO の正味状態変数は便利な表現であ る。

3. ISO 11843における検出限界の定義

定量分析の最終目的の量は濃度推定値であることから、検 出限界は濃度の単位で定義されている。そこで、濃度推定値 の分布から話を始める。

液体クロマトグラフィーの場合、注入誤差、検出器のノイ ズ、光源のゆらぎ、流路の温度のゆらぎなどが測定値に影響 する。同一条件でくり返し測定を行うと、測定値は測定ごと に異なった値を取り、測定値全体はある分布を示す。この測 定値を検量線で濃度に変換すると、濃度推定値の分布が得ら れる。Figure 1 には、濃度推定値の分布が模式的に描かれて いる。

ブランクサンプルと検出限界の分析対象物質を含むサンプ ル(検出限界サンプル)の測定値はどちらも正規分布に従う と仮定する。実際に、HPLCとキャピラリー電気泳動では測 定値の正規性が観測されている[4]。検量線が直線であると、 検量線によって測定値を変換した濃度推定値の分布も正規と なる。本稿は検量線が直線である機器分析に焦点を絞ること から、濃度推定値の分布も正規であることを前提とする。し かし、競合法 ELISA のように検量線が非線形であると、濃 度推定値の分布は正規とはならない[5,6]。この場合の検出限 界の推定法は ISO 11843 Part 5 に記述されている。

ブランクサンプルの濃度推定値の平均は0であり、検出限 界サンプルの濃度推定値の平均は検出限界 x_d である(Figure 1の左と右)。分析系がブランク濃度推定値の分布を示す場 合、分析系は基底状態(basic state)にあるという。検出限 界濃度推定値の分布を示す場合は、分析系は検出限界の状態 (state of x_d)にあるという。

濃度0と検出限界の間には、判定限界 x_aが定義されてい る[1,2]。判定限界は、2つの確率αとβを規定する。αは第 1種の誤りの確率であり、ブランクサンプルを測定したと き、濃度推定値が判定限界より大きくなる確率である。翻訳 規格 JIS Z 8462-1では、次のように記述されている。x_aは、 「その値を超えると、あらかじめ定めた誤りの確率αで、 観測した測定対象系が基底状態ではないと判定される正味状 態変数 X の値」である。

β は第2種の誤りの確率であり、検出限界サンプルを測定 したとき、濃度推定値が判定限界より大きくなる確率が1β である。JIS Z 8462-1では、検出限界 x_a は、「確率(1β) で測定対象系が基底状態にないと判定される、実際の状 態における正味状態変数 X の真の値」と定義されている。 研究室においては、検出限界 x_a は実験的に求めるので、 x_a は推定値であり真の値を知ることはできない。そこで、JIS の記述は [X の値]ではなく、[X の真の値]となっている。

判定限界 x。と検出限界 x。を次のように記述する[1]:

$$=k_c\sigma_x$$
 (式1)

 \mathbf{X}_{c}

Figure 1. Probability distribution of estimated concentration in the basic state (left) and in the state of detection limit (right).

 α denotes the probability of the basic state being above x_c and β the probability of the state of x_d being below x_c .

$$\mathbf{x}_{d} = \mathbf{x}_{c} + k_{d} \mathbf{\sigma}_{\mathbf{x}} \tag{\textbf{I}} 2$$

ここで、k。とkaは定数であり、Gxは濃度推定値の分布の標準偏差である。ISO 11843 Part 7 では、濃度推定値の標準偏差は濃度に関わらず一定であると仮定している。濃度0から検出限界の間の狭い範囲では、濃度推定値のSDは一定であると仮定しても実践的には問題はない。

濃度推定値の分布が正規であると、確率 $\alpha \ge \beta$ を把握し やすい。正規分布の性質から、 $k_{\alpha} = k_{\alpha} = 1.65$ とすれば、 $\alpha = \beta$ = 0.05 (= 5%) である。式1と式2は、次のようになる:

$$\mathbf{x}_{c} = \mathbf{1.} \, \mathbf{65} \sigma_{\mathbf{X}} \tag{\textbf{$\vec{\mathbf{x}}$ 3}}$$

$$\mathbf{x}_{d} = \mathbf{3.} \ \mathbf{3\sigma}_{\mathbf{x}} \tag{\textbf{$\mathbf{\vec{x}}$ 4 }}$$

となる。ここで、式4は

$$\sigma_{x}/x_{d} = 1/3.3$$
 (式 5)

と変形できる。σ_x/x₄ は濃度推定値の相対標準偏差(RSD) を表すので、式5は検出限界サンプルの濃度推定値のRSD は0.3であることを示している[1]。つまり、検出限界を見つ けるには、濃度推定値のRSDが30%となる濃度を探せばよ い(後述)。

ISO 国際規格の目的の一つは間違いを最小にすることである[3]。 α と β は判定の誤りの確率であるから、この確率を 低くするためには、定数 k_c と k_d を大きくすればよい。たと えば、 $k_c = k_d = 10$ とすれば、誤りの確率はほとんどゼロとな るが、微量な危険物質の混入を検出できる可能性は非常に低 くなる。そこで、誤りの確率5%は許容するとして、 $k_c = k_d$ = 1.65とすることが多い。もちろん、濃度推定値の分布が正 規であると仮定した話である。

実験的な容易さから、濃度推定値の分布よりも、測定値の 分布の方が取り上げられることが多い。しかし、ISOでは、 検出限界は濃度の単位で定義されている。測定値の単位(吸 光度、電流など)では定義されていないことに注意が必要で ある。一方、判定限界は測定値と濃度のどちらの単位でも定 義されている。

検量線が原点を通る直線である限り、測定値の分布を濃度 推定値の分布に変換すると、Figure 1 の α (Basic state の分 布で、x_e以上の確率) と β (State of x_d の分布で、x_e以下の 確率) の値は、測定値の分布においても濃度推定値の分布に おいても同じである。しかし、非線形の検量線の場合、この 変換は α と β の値を変える可能性がある。そこで、定義の 一般性を保持するために、ISO 11843 Part 5 と Part 7 では、 検出限界の定義は、Figure 1 のように、濃度推定値(検量線 の X-軸) に基づいている。濃度推定値の分布と測定値の分 布が大きく異なる場合、たとえば、競合法 ELISA の分野で は、ISO 11843 Part 7 発行以前から、検出限界の議論は濃度 推定値の分布だけに基づいて行われていた[6]。

4. ISO 11843 Part 7 の必要性

ISOの規格作成は、提案された題材の規格としての必要性 を議論することから始まる。ISO 11843 Part 7 の科学技術 的、経済的、社会的な利益については、緒言で簡単に述べ た。本項では、科学技術的な側面について付け加える。検出 限界は、それ自体が推定値であるため誤差を含む。少ない労 力でこの誤差をできる限り小さくすることが、ISO 11843 Part 7 の目的の一つである[3]。

Figure 2 は、アセトアミノフェンの同一サンプルを同一の HPLC システムで1日に6回測定し、その測定値の SD(○) を7日間分プロットしたものである。分析法バリデーション における併行精度の日間変動、または試験日時だけを変えた 室内再現精度である。Figure 2 の SD 推定値のバラツキの解 釈としては、次の 2 つが考えられる[7]:

解釈A:このバラツキは、使った HPLC 装置の調子の日間 変動を表している;

解釈 B:使った HPLC 装置の調子は7日間一定であり、この バラツキはくり返し測定によって求めた SD 推定値自体のバ ラツキを表している。

つまり、「HPLC 装置の調子を測定値の SD として表す場合、Figure 2 の HPLC 装置の調子は SD 推定値のバラツキのように日間変動するのか、あるいは、安定していて日毎に変化しないのか?」という問題である。

サイコロの目の SD は約1.71であるが、有限の数(たとえ ばn=6)のくり返し実験から求めた SD 値は、求めるたび に異なり、1.71の周りに分布する。同様に、同一の正規分布 の母集団から独立な6回のサンプリングで得られた値(6個 の正規乱数と考えてもよい)から計算した SD 値も、求める たびに異なり、真の SD 値の周りに分布する。6×100回の 独立なサンプリングを行い、100個の SD 推定値を求めたと 仮定する。100個の推定値は真の値の周りに分布するので、 95個の推定値を含み、残りの5 個の推定値が外にある区間が 存在する。この区間を95%信頼区間という。

正規分布のSD 推定値(厳密には分散の推定値)の95%信 頼区間はカイ2乗分布として知られている。Figure 3 の曲線 は、標準偏差の真の値を1としたときの95%信頼区間を表し ている[7]。くり返し数nが大きくなるに従って、95%信頼 区間は狭くなる。つまり、SD 推定値が真の値に近い確率が 増す。たとえば、n=6では、95%信頼区間は約0.4~1.6で あり、下限と上限の比は4倍である。しかし、n=40では、 95%信頼区間は約0.75~1.25であり、下限と上限の比は約 1.6倍である。

Figure 2の SD 推定値をその平均で割り、Figure 3の n = 6

Figure 2. Daily change in SD estimates (\bigcirc) of measurements in HPLC analysis of acetaminophen [7]. Samples for repetition are 10 ng/L acetaminophen. Six measurements are consecutively obtained a day for SD estimation and this series of measurements are repeated for seven days to give seven SD estimates (\bigcirc). 日本薬学会 YAKUGAKU ZASSHI 第122卷第10号849頁より転載。

Figure 3. 95% Confidence intervals () of SD estimates from Chi–square distribution and distributions in experimental SD estimates (○ and ■) [7].

○: data from Figure 2; ■: data from the FUMI theory. 日本薬学会 YAKUGAKU ZASSHI 第122巻第10号851頁より転載。

の位置でプロット(○)すると、すべての推定値(○)が95% 信頼区間に含まれていることが分かる。これより、上記の解 釈はBが正しいと結論してよいだろう。厳密に言えば、こ の実験データからでは、解釈AとBのどちらか一方だけを 選択することはできない。しかし、もし装置の安定性に観測 可能なくらい大きなバラツキがあれば、Figure 3 の95%信頼 区間から大きくはみ出す推定値(○)が見られる可能性が高 いからである。

現実には、測定装置の環境をできる限り一定に保ち、同一 サンプルを測定しても、SD 推定値は Figure 2 のようにばら っく。

分析機器の調子が一定であれば、真の検出限界も一定であ ると考えるのが自然である。しかし、測定値の SD 推定値は くり返し実験ごとにばらつく。検出限界は SD 値の定数倍 (式4の3.3)であるので、この3.3は固定するとしても、実 験的に求めた検出限界は、n=6では、4倍くらい異なる可 能性がある(Figure 3 の曲線を参照)。Figure 2 と Figure 3 に おける 7 個の SD 推定値(○)の最小と最大の比は 3 倍強、 4 倍弱であることから、この可能性は納得がいく。検出限界 が4 倍異なる可能性は、分析化学的に許容できるだろうか。 真の検出限界が1mg/L、測定対象物質の濃度が10mg/Lで あると仮定する。簡単のために、測定値はばらつかないと仮 定する。n=6の場合、SD推定値の95%信頼区間は0.4~ 1.6であるため、検出限界推定値が0.4~1.6mg/Lの間で変 動しても、濃度10mg/Lの物質はほとんどの場合で「検出さ れた」と結論できるだろう。次に、測定対象物質の濃度が1.5 mg/Lである仮定する。この物質は検出限界以上であるが、 実際の測定結果は検出と不検出が混在することになる。なぜ ならば、検出限界が上記のようにばらつくからである。

Figure 3 の●は、ISO 11843 Part 7 の方法から求めた SD 値をプロットしたものである。これらの SD 値のばらつきの 程度(約0.75~1.25)から、その信頼区間を推定すると、 95%信頼区間は n=40の区間(0.75~1.25)に相当すると推 定できる(Figure 3 より)。すると、上記の問題の検出限界 (1 mg/L)は95%信頼区間0.75~1.25 mg/Lの間で変動する と考えられる。この場合、濃度1.5 mg/Lの測定対象物質を 測定すると、ほとんどの場合、検出と判定されるだろう。つ まり、本来検出すべき物質を、確実に検出できるのである。

この ISO の方法は、実サンプルのくり返し測定を省略で きるが、クロマトグラムのデジタルデータを必要とする。こ れまでの実験データから、ノイズデータとして最低256ポイ ントが必要であることが分かっている。256ポイントのノイ ズデータをクロマトグラムから抽出することは容易である が、くり返し測定で同等な信頼性を持つ SD 値を得ることは 現実的にはほとんど不可能である。なぜならば、n=40のく り返し数が必要だからである。

性能の良い測定装置を使用できれば、検出限界の推定値の 曖昧さを考慮する必要はない。しかし、検出限界と測定対象 物質の濃度が近い場合には、検出・不検出の判定が信頼でき なくなるため、検出限界推定値の曖昧さを考慮する必要性が 生じる。

5. FUMI 理論の概観

FUMI 理論は、分析機器の出力(時系列)はシグナルとバッ クグラウンドノイズの和であるというモデルを採用している [4]。くり返し測定においては、シグナルは測定毎に変化し ないで常に同じ形(たとえば、決まった山型のピーク)を示 すが、ノイズは毎回異なると仮定している。ただし、ノイズ はランダムであるが、ある確率法則に従って出現するモデル (ホワイトノイズとマルコフ過程)を採用している。

測定毎に同じシグナルが出現するため、シグナルだけが分 析機器から出力されれば、原理的には常に同じ測定値(面積 値または高さ)が得られる。測定値の平均は真の値に等し く、測定値の標準偏差は0である。しかし、シグナルとノイ ズが同時に出力されると、測定は誤差を含む。シグナルが一 定である限り、この誤差はノイズだけに起因し、面積測定値 の誤差はノイズが作る面積(偽りの面積)に相当する。無限 回の測定を仮定すれば、測定値の平均は、誤差が相殺される ため、真の値と等しくなるが、測定値の標準偏差は、誤差の 大きさを推定するため、ゼロではない有限の値となる。つま り、測定値の標準偏差は誤差の標準偏差と同じである。標準 偏差の式には、個々の測定値から測定値の(真の)平均を引 く項がある。これが、上記2つの標準偏差の同等性を表して いる。

以上を、簡潔にまとめる。FUMI 理論では、ノイズが作る 偽りの面積の標準偏差が測定値の標準偏差に等しい。

FUMI 理論を実際に使うときのポイントを挙げる:

- 実際のバックグラウンドノイズをモデルノイズ(ホワイトノイズ+マルコフ過程)で近似し、実際のノイズからモデルノイズのパラメータ(ノイズパラメータ)を抽出する;
- 2. 実際のシグナルから、シグナルの幅、頂点の位置などの パラメータ(シグナルパラメータ)を設定する;
- 3. FUMIの式にノイズパラメータとシグナルパラメータを 代入し、測定値の SD(または RSD)を計算する。

これら3つの段階を実行するための操作をFigure4に示 す。第1段階は、分析機器の実際のバックグラウンドノイズ

(Noise (1/f noise))をフーリエ変換し、パワースペクトル (ギザギザの線)を作成することである。この実測パワース ペクトルにモデルノイズ (White noise+マルコフ過程)の理 論パワースペクトル (滑らかな線)を非線形最小2乗フィッ ティングすると、3つのノイズパラメータ ($\tilde{w}, \tilde{m}, \rho$)が 決定される。

第2段階は、シグナルに関するパラメータ(ピークの幅、 面積、ゼロウィンドウ)を決定することである。ゼロウィン ドウは、ピークの相対的なベースラインの位置(ゼロ点)を 決定するための領域であり、この領域の出力強度の平均をゼ ロ点とする。シグナルパラメータはユーザが任意に指定でき るが、ノイズパラメータは最小2乗法により自動的に決定さ れる。

第3段階は、ノイズパラメータとシグナルパラメータを FUMIの式(Figure 4 の式)に代入することである。この操 作により、測定値の RSD が計算される。

パワースペクトルは、X-軸が周波数、Y-軸がパワー密度 のグラフであり、ある周波数(Hz)を持つ波のエネルギー を示す。Figure 4 または Figure 5 のパワースペクトル(ギザ ギザの線)を見ると、低周波の波のエネルギー(図の左側) は、高周波の波(図の右側)より大きいことがわかる。多く の自然現象のパワースペクトルは、このように右下がりであ る。特に、1/fゆらぎと呼ばれる現象は数多く知られてい て、そのパワースペクトルは周波数fに反比例する[4]。1/f ゆらぎを Figure 4 または Figure 5 のように両対数で表示する と、そのパワースペクトルは傾き – 1 の直線になる。カラム クロマトグラフィーのベースラインノイズのパワースペクト ルも1/f ゆらぎに似ている場合がある。FUMI 理論は、1/f ゆ らぎをホワイトノイズとマルコフ過程の混合確率過程で近似

する理論とも言える。

FUMI 理論においては、パワースペクトルはノイズパラ メータを抽出するための手段である。自己相関関数を用いて も目的は達せられるが、フーリエ変換して得られるパワース ペクトルを使うことがほとんどである。分析機器のバックグ ラウンドノイズは、観測するごとに異なって見える(Figure 5左)。これらのパワースペクトルのギザギザのパターン (Figure 5 右)も観測ごとに異なるが、これらにフィッティ

Figure 4. Principle of the FUMI theory.

Figure 5. HPLC background noise (left) and its power spectrum (right).

には、くり返し測定に関する情報が凝縮されていると考えら れる。FUMI 理論は、この情報を最小2乗フィッティングで 取り出し利用する。FUMI 理論はくり返し測定を回避できる が、代わりに、相当数(たとえば、512ポイント)のデジタ ルのノイズデータを必要とする。

分析機器のバックグラウンドノイズのパワースペクトル は、その装置の状態が一定ならば、ほとんど同じパターン (傾き、位置)を示す(ノイズパラメータ(w、m、ρ)は ほとんど同じ)。逆に、装置の状態が変化すると、パワース ペクトルのパターンも変化する。この性質を利用して、分析 機器のルーチンチェックの指標としてパワースペクトルを用 いることができる[4]。

測定値の RSD を計算するために必要な数学的方法は、 フーリエ変換、パワースペクトル、非線形最小2乗法、FUMI の式である。これらを電卓で実施するのは不可能であるが、 PC を使えば簡単である。フリーのソフト(TOCO)では、 ノイズに関する領域とシグナルに関する領域をそれぞれマウ スで囲めば、RSD と検出限界が自動計算される。西川計測 の LC/GC Powered (Agilent Technologies の GC、LC、LC/MS (Single Quad) に搭載されている ChemStation 用のアドオン データ解析・レポートソフトウェア)にも同様の自動計算が 実施可能である。日本分光からは、クロマトグラフィーデー タシステム (CDS) ChromNAV のオプションプログラムと して FUMI 理論精度計算プログラムが発売されている。

6. FUMI の式の導出

FUMIの式は、ノイズが作る偽りの面積の標準偏差を計算 する式であることは前項で述べた。FUMIの式の導出は、次 の手順で行う:

- 1.時間iにおけるノイズの強度を記述する;
- 2. ある時間区間におけるノイズの強度の和(偽りの面積) を記述する;
- 3. 偽りの面積の分散(標準偏差の2乗)を求める。
- ノイズの成分であるホワイトノイズの時間iでの強度は

と表せる。ただし、時間は離散とする(i=0,1,2,…)。wiは 確率変数であり、通常の関数のようにある値をとる。しか し、wiは、観測するたびに異なった値を取ることが通常の 関数とは異なる。そのため、「ある時間 i で wi がある特定の 値を取る」は意味を成さないが、wi の分布、つまり、平均 と標準偏差は定数として表せるので、「ある時間 i で wi があ る特定の値以上の値を取る確率」は意味がある。

ノイズの測定は時間0から始まると仮定する。ノイズのく

り返し測定においても、どの測定も時間0から始まると仮定 する。すると、時間iにおけるノイズ強度wiは、くり返し 測定毎に異なるが、無限にくり返した測定におけるwiをす べて集計すると、これらは平均0、標準偏差wの正規分布 を示す(ホワイトノイズの定義)。wiの平均と標準偏差は、 時間iについて行うのではなく、iは固定して、くり返し測 定について行うのである。これが、wiの平均と標準偏差の 意味である。wiはアンサンブル平均と言われている。

一般的な確率過程としては、w_iの平均と標準偏差が、時間iに従って、変化しても問題はない。しかし、ホワイトノ イズの定義では、w_iの平均と標準偏差は時間によらず一定 である。

同様に、時間iでのマルコフ過程の強度は

$$\mathbf{M}_{i} = \rho \mathbf{M}_{i-1} + \mathbf{m}_{i} \tag{\frac{1}{3}} 7)$$

である。マルコフ過程は、1ステップ前の時間 i - 1の強度 M_{i-1} に定数 ρ をかけた位置 ρM_{i-1} から出発し、 m_i だけ移動す る。 m_i は平均 0 で標準偏差 \tilde{m} のホワイトノイズであり、マ ルコフ過程の駆動力である。 ρ は 1 未満 0 以上の値を取る。 $\rho = 0$ の場合は、ホワイトノイズである。ホワイトノイズは 自己相関がなく、マルコフ過程は自己相関があると言われ る。例えると、ホワイトノイズの軌跡は、サイコロの出た目 をプロットしたものであり、マルコフ過程は、すごろくの位 置をプロットしたものである。

FUMI 理論のノイズモデルでは、時間 i におけるバックグ ラウンドノイズの強度は

$$\mathbf{Y}_{i} = \mathbf{M}_{i} + \mathbf{w}_{i} \tag{\textbf{$\vec{\mathcal{X}} 8$}}$$

である。時間1からkまでの区間でのノイズの強度の和は

$$\mathbf{F} = \sum_{i=1}^{k} Y_i \tag{$\mathbf{T} $ 9 $}$$

であり、ノイズが作る偽りの面積を表す。

偽りの面積(式9)の平均は0である。なぜならば、Fに 含まれる Y_iは、ホワイトのノイズ w_iと m_iの和であり、ホ ワイトノイズの平均は0だからである。一方、偽りの面積の 分散は0とはならない。偽りの面積の分散を

$$Var(F) = E[F^2] \tag{$\frac{1}{2}$}$$

と表す。ここで、E[Z]は、確率変数Zの平均を表す。

最後の問題(上記手順3)は、式10をw_iとm_iの関数として展開することである。マルコフ過程(式7)は時間(i=0,1,…,k)ごとに次のように記述できる:

$$\begin{split} &M_0 = 0 \qquad (\mbox{$(k z)$}) \\ &M_1 = m_1 \\ &M_2 = \rho m_1 + m_2 \\ &M_3 = \rho^2 m_1 + \rho m_2 + m_3 \\ &\cdots \\ &M_k = \rho^{k^{-1}} m_1 + \rho^{k^{-2}} m_2 + \cdots + \rho m_{k^{-1}} + m_k \end{split}$$

式8から式10と、 M_1 から M_k と w_0 から w_k を利用すれば、ノ イズが作る偽りの面積の標準偏差を、ノイズ(w_1 , w_2 , …, w_k , m_i , m_2 , …, m_k , ρ)とシグナルの幅kの関数として記 述できる。この式は、確率変数としては、ホワイトノイズ w_i と m_i だけを含んでいるので、ホワイトノイズの基本的な性 質を使うと解くことができる。

時間iのホワイトノイズと時間jのホワイトノイズは独立 である。ホワイトノイズの平均は0であることを考慮する と、次の性質がある。

$$\begin{split} \mathbf{E}[\mathbf{w}_i] &= 0\\ \mathbf{E}[\mathbf{m}_i] &= 0\\ \mathbf{E}[\mathbf{w}_i \mathbf{w}_j] &= 0, \quad \text{ifi} \neq j\\ &= \widetilde{w}^2, \quad \text{ifi} = j\\ \mathbf{E}[\mathbf{m}_i \mathbf{m}_j] &= 0, \quad \text{ifi} \neq j\\ &= \widetilde{m}^2, \quad \text{ifi} = j\\ \mathbf{E}[\mathbf{w}_i \mathbf{m}_i] &= 0 \end{split}$$

これらの式を使えば、FUMIの式(文献[8]の式19)を導出で きる。現在使われている FUMIの式は、ゼロウィンドウと水 平でないベースラインを使って面積測定をした場合を考慮し ている[9,10]。

7. 電気化学検出 HPLC における検出限界推定の実践

カテキン類の電気化学検出 HPLC の検出限界推定をくり 返し測定による方法と FUMI 理論による方法で実施した例を 紹介する[11]。

7.1 くり返し測定による方法

カテキン類の電気化学検出 HPLC を用い、0.1 µmol/L の エピカテキンについて5回のくり返し測定を行って得た5本 のクロマトグラムを Figure 6 に示す。Figure 6 のクロマトグ ラムよりエピカテキンのピーク面積の RSD を算出したとこ ろ、2.14%であった。他に、0.5、0.3、0.05、0.03 µmol/L のエピカテキンについても同様に5回のくり返し測定を行 い、ピーク 面積の RSD を算出したところ、それぞれ 0.75%、0.93%、4.88%、6.92%であった。このように、く り返し測定により5濃度における RSD (n=5)を求めるに は、計12.5時間の測定時間を費やして25本のクロマトグラム を測定する必要がある。

くり返し測定により検出限界 xaを求める方法のひとつと

HPLC conditions: mobile phase, acetonitrile -0.1 mol/L phosphate buffer (pH2.5), (15:85, v/v); column, LiChrospher 100 RP–18 ODS column (250×4.0 mm I.D., 5 µm); flow-rate, 0.45 mL/min; applied potential, +0.6 V vs. SCE (saturated calomel electrode).

して、『ブランク試料の測定値の SD と検量線の傾きから算 出する方法』があり、以下の式で算出することができる。

 $\mathbf{x}_{d} = 3.3\sigma/slope \qquad (\mathbf{\vec{\chi}}11)$

ここで、 σ はブランク試料の測定値の SD、*slope* は検出限界 付近の検量線の傾きである。式11は式4と同じである。ただ し、式11では測定値の SD を使っているが、検出限界の定義 により濃度の SD を使う必要があるため、変換($\sigma_x = \sigma/slope$)を行っている。これは、日本薬局方でも採用されて いる方法である。

クロマトグラフィーの場合は、測定値の SD の代わりにノ イズ・レベルを用いることができることも日本薬局方では規 定されている。Figure 6 のクロマトグラムのノイズ・レベル に基づき、エピカテキンの検出限界は、7.4 nmol/L であると 算出できる。この方法は簡便であるが、残念ながら、ISO 11843、JIS Z 8462、分析化学の本[2]などが基づいている統 計的な定義(確率 α と β)とは対応しないことが分かってい る[12]。

7.2 FUMI 理論による方法

FUMI 理論による方法では、Figure 4 に示した概観に従 い、Figure 6 のエピカテキンのクロマトグラムのうち1本を 用いて、精度プロファイルを作成する。まず、第一段階で は、エピカテキンのクロマトグラム(Figure 7 A、Noise)の ベースラインノイズをフーリエ変換して得たパワースペクト ル(Figure 7 B、ジグザグ線)に、シンプレックス最小2乗 法によって FUMI の理論曲線(Figure 7 B、曲線)をフィッ ティングさせる。Figure 7 B から FUMI の理論曲線と実測の パワースペクトルは、良好にフィッティングしていることが わかる。従って、電気化学検出 HPLC のベースラインノイ ズも FUMI 理論のモデルで近似でき、3つのノイズパラメー タを決定できる。

第二段階では、エピカテキンのクロマトグラムのピーク (Figure 7 A、Signal)からシグナルに関するパラメータ (ピークの幅、面積、ゼロウィンドウ)を決定する。今回、 Figure 7 A のエピカテキンのピーク形状からピークの幅は 516ポイント(103.2 sec)、ゼロウィンドウは10ポイント(2 sec)に決定した。第三段階では、決定されたノイズパラメー タとシグナルパラメータを FUMIの式に代入し、エピカテキ ンの精度プロファイルが取得できた(Figure 8、実線)。こ れに、くり返し測定により求めたエピカテキンのピーク面積 の RSDをプロットした(Figure 8、〇)。FUMI 理論による 方法とくり返し測定による方法、各々の方法より得られた RSD はよく重なっており、電気化学検出 HPLC の精度推定 に FUMI 理論が適用できることがわかる。

FUMI 理論は1本のクロマトグラムだけを使うが、測定していない濃度についての RSD も推定可能であることが大き

Figure 7. Chromatogram of epicatechin by HPLC with electrochemical detection (A) and its power spectrum of chromatographic baseline noise (B).

The smooth solid line in B indicates the best fit of the model power spectrum (white noise + Markov process) to the real power spectrum (zigzag line).

な利点である。従って、精度プロファイルにおいて30%RSD から検出限界(3.3σ)を求めることができる。Figure 8 のエ ピカテキンの精度プロファイルから、電気化学検出 HPLC によるエピカテキンの検出限界は7.1 nmol/L であると算出で きる。

Figure 8 の精度プロファイルを求めるために、くり返し測 定(○)では25個のサンプルと計12.5時間の測定時間が必要 であるが、FUMI 理論(一)では1個のサンプルと0.5時間 の測定時間が必要であった。両者が費やす物質、エネルギー の差は大きい。本項で示したカテキン類の電気化学検出 HPLC は、ISO 国際規格の意図がよく反映された例である。

Figure 8. Precision profiles for the determination of epicatechin by HPLC with electrochemical detection.

The observed RSD (n = 5) of epicatechin at each concentration is indicated by open circle. The predicted RSD of epicatechin based on the FUMI theory is indicated by a solid line. The arrow denotes the detection limit.

8. おわりに

ISO の web ページにある文章を引用して、本稿を結びた い。"For business, ISO International Standards are strategic tools that reduce costs by minimizing waste and errors and increasing productivity." ここで、ビジネスにおける戦略ツール、コス トの削減、無駄、間違い、生産力がキーワードである。

参考文献

- [1] ISO 11843 Part 7 Methodology based on stochastic properties of instrumental noise.
- [2] Miller, J. C.; Miller, J. N. 宗森信訳 データの取り方と まとめ方 *共立出版* **1993**.
- [3] http://www.iso.org/iso/home.html
- [4] 林 譲;松田りえ子. HPLC分析の精度 林純薬工業 1999.
- [5] Hayashi, Y.; Matsuda, R.; Maitani, T.; Imai, K.; Nishimura,
 W.; Ito, K.; Maeda, M. Anal. Chem. 2004, 76, 1295–1301.
- [6] Dudley, R. A.; Edwards, P.; Ekins, R. P.; Finney, D. J.;
 McKenzie, I. G. M.; Raab, G. M.; Rodbard, D.; Rodgers, R.
 P. C. *Clin. Chem.* **1985**, *31*, 1264–1271.
- [7] Iwagami, T.; Ueda, T.; Kimura, Y.; Morimoto, N.; Matsuda,
 R.; Hayashi, Y.; Imai, K. *YAKUGAKU ZASSHI* 2002, *122*, 849–854.
- [8] Hayashi, Y.; Matsuda, R. Anal. Chem. 1994, 66, 2874–1881.
- [9] Hayashi, Y.; Matsuda, R. Chromatographia 1995, 41, 75-83.
- [10] Poe, R. B.; Hayashi, Y.; Matsuda, R. Anal. Sci. 1997, 13, 951–962.
- [11] Kotani, A.; Hayashi, Y.; Matsuda, R.; Kusu, F. J. Chromatogr. A. 2003, 986, 239–246.
- [12] Matsuda, R.; Hayashi, Y.; Sasaki, K.; Saito. Y.; Iwaki, K.; Harakawa, H.; Satoh, M.; Ishizuki, Y.; Kato, T. *Anal. Chem.* 1998, 70, 319–327.